#### **Balancing Carbon on the Farm**

by John-Paul Praat (jp.praat@pahandford.co.nz)







# P A Handford & Associates Ltd Outline

- Project
- Background (GHG in Ag, govt initiatives)

CarbonFarmincGroup

utral Climate Change Advice

- Three Case Studies
- Current Kyoto obligation
- Summary





# MAF Sustainable Farming Fund Project

- Co funded by Carbon Farming Group
- Supported by
  - NZ Farm Forestry Association
  - NZ Landcare Trust
  - Greater Wellington Regional Council
- Aim To help farmers, agribusiness managers and farm foresters to understand carbon farming







- Presentation will shows a basic farm carbon balance
- Not provide all the recipes







P A Handford & Associates Ltd Background

- Wide international science and government agreement and significant market trading around climate change and greenhouse gases.
- International agreement for action: Kyoto Protocol
  - NZ a signatory, agree to maintain 1990 levels of GHG emissions or pay for net increase, 1<sup>st</sup> due 2015





# Agricultural greenhouse gas emissions

 Main greenhouse gases (GHG) are carbon dioxide (CO<sub>2</sub>) methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>0).







## Agricultural greenhouse gas emissions



Net emissions from Carbon Farming Group Carbon Calculator and Overseer, based on NZGHG Inventory Tables

## **Opportunities to manage Ag emissions**

## • Efficiency

- Fertiliser application (nitrification inhibitors, accuracy)
- Stock policy (profitability per SU, lambing %, LWG)
- Irrigation (application uniformity, \$/kgDM)
- Effluent management (carbon source, biogas)
- Electricity (heat recovery, alternative on-farm sources)
- Establish crops using no-till, reduce fuel by 2/3
- Research
  - Mitigation strategies such as Vaccine to suppress enteric methane production (PGgRc)
  - BioChar (may reduce CO<sub>2</sub> and N<sub>2</sub>O emissions)
- Afforestation
  - (off-set, transitional)



# Forestry as an Offset





Afforest appropriate on farm areas (low production, erosion)

Invest in forestry off farm

# **Three Government Initiatives**

- Afforestation Grant Scheme (AGS)
  - Offers a grant to establish new forests
- Emissions Trading Scheme (ETS)
  - Trading mechanism for carbon credits and liabilities

an De la comunication de la comunicación de la comunicación de la comunicación de la comunicación de la comunic

- While under review is implemented for forestry
- Permanent Forestry Sink Initiative (PFSI)
  - Claim credits, harvest without liabilities





## P A Handford & Associates Ltd Farm Carbon Balance

- Three Case Studies
- Carbon Inputs and outputs
- Emissions as CO<sub>2</sub> Equivalents







# **Three Case Studies**

| Sheep and Beef           | Dairy + dairy run-off | Arable             |
|--------------------------|-----------------------|--------------------|
| 5300 SU                  | 5040 SU (535 cows)    | 860 SU (ewes)      |
| 600 ha                   | 220 ha                | 290 ha (214 irrig) |
| 8 tonne N                | 39 tonne N            | 28 tonne N         |
| 30 ha post 1990 forestry | No forestry           | No forestry        |







## Annual carbon inputs and outputs

| Source            | Sheep and Beef | Dairy + dairy run-off | Arable |
|-------------------|----------------|-----------------------|--------|
| Petrol (I)        | 2540           | 1500                  | 4922   |
| Diesel (I)        | 52             | 1100                  | 18190  |
| Electricity (kWh) | 19660          | 62240                 | 428000 |
| Nitrogen (tN)     | 8              | 39                    | 28     |
| Dairy cows        |                | 535                   |        |
| Sheep             | 2862           | 0                     | 860    |
| Cattle            | 469            | 199                   |        |
| Forestry (ha)     | 30             |                       |        |

Carbon Farming Group Neutral Climate Change Advice





## CO<sub>2</sub> emissions equivalents from carbon calculator

| Annual GHG      | Sheep and Beef | Dairy + dairy run-off | Arable |
|-----------------|----------------|-----------------------|--------|
| Petrol          | 6              | 4                     | 12     |
| Diesel          | 0              | 29                    | 48     |
| Electricity     | 5              | 14                    | 97     |
| Nitrogen        | 45             | 221                   | 157    |
| Dairy cows      | 0              | 1321                  | 0      |
| Sheep           | 944            | 0                     | 284    |
| Cattle          | 802            | 340                   | 0      |
| Gross Emissions | 1802           | 1929                  | 598    |
| Forestry        | -660*          | 0                     | 0      |

Pruned and thinned radiata pine, medium fertility site, 22 tonnes/ha/yr. Conservative, simple flat rate from Indicative sequestration tables, SCION, 2008

CarbonFarmingGroup

imate Change Advice





## **Emissions Split**

|             | Sheep and Beef | Dairy + dairy run-off | Arable          |
|-------------|----------------|-----------------------|-----------------|
| % Livestock | 97 %           | 86 %                  | 47 %            |
| % Other     | 3%<br>(2.4% N) | 14%<br>(11% N)        | 53 %<br>(26% N) |

CarbonFarmingGroup Neutral Climate Change Advice





## P A Handford & Associates Ltd Analysis Assumptions

- High Carbon Importance Scenario
  - market demand carbon neutral
- Livestock numbers remain unchanged
- Use Sheep and Beef Case Study
  - similar to Dairy in GHG emissions
- Forestry is a viable offset, not harvested

CarbonFarminoG











## Annual Cost of Emissions for Carbon Neutral Sheep and Beef Farm

|                             | \$25/tonne CO <sub>2</sub> | \$50/tonne CO <sub>2</sub> |
|-----------------------------|----------------------------|----------------------------|
| No Forestry                 | \$45,000                   | \$90,000                   |
| Existing Forestry<br>(30ha) | \$28,550                   | \$57,000                   |
| New Forestry<br>(+50 ha)    | 0                          | 0                          |

CarbonFarmingGroup

Climate Change Adviče





# Kyoto and NZ







#### **Agricultural GHG emissions profile**





# Forest area to be Kyoto Compliant?

|                 | Sheep and Beef | Dairy + dairy run-off | Arable |
|-----------------|----------------|-----------------------|--------|
| Kyoto <b>7%</b> | 5.6 ha         | 5.3 ha                | 1 ha   |

Carbon Farming Group





# Risks and Liabilities of forest carbon

 Same biological and environmental risks as existing forests only the value may be higher so premiums higher

CarbonFarmindGroup

• Self insure by banking credits





# Harvest decision factors



# Co benefits from integrating carbon

- Soil & water protection
- Income diversification
- Increase biodiversity
- Good soil management
- May address market carbon footprint concerns
- Better environmental performance easier RC relationship

Carbon FarmingGr





# Summary

- Ruminants considered net emitters of GHG
- Kyoto obligations
- Bulk of emissions difficult to mitigate
- Potential for integration of forestry off-set to internalise business risk, at least a medium term solution until (30 to 50 years) while new GHG mitigation technologies are implemented.
- Consider approach now for future obligations
- Develop an integrated carbon management approach, don't manage for carbon itself

Carbon Farmina Groun





# Thanks

Please take info sheets and or card for follow-up information





